

OBJECTIVE

Challenge

- Development of 8.4m diameter Space Launch System (SLS) requires new family of 8.4m Payload Adapters (PLA)
- SLS PLAs need to accommodate unique requirements (relative to existing launch vehicles) including payload types, sizes, mass, and trajectories

Solution

 Iterative PLA design approach to optimize performance, reduce mass, increase potential model reusability

Approach

Apply a Model Based System Engineering (MBSE) approach to managing data flow through PLA designanalyze-build process

AGENDA

Part 1

- Understand the unique payload accommodation requirements of SLS PLA
- Establishes trade study constraints

Part 2

- Discuss results of NASA Engineering and Safety
 Center (NESC) sponsored PLA MBSE pathfinder
- -Conclusions
- -Future Work

SLS BLOCK CONFIGURATIONS

OSA - Orion Stage Adapter ICPS - Interim Cryogenic Propulsion Stage PLF - Payload Fairing EUS – Exploration Upper Stage USA – Universal Stage Adapter

PPL – Primary Payload CPL – Co-manifested Payload SPL – Secondary Payload

SLS SPACE LAUNCH SYSTEM

SLS PAYLOAD MISSION CAPTURE

SLS TIME TO DESTINATION

- **Shorter Transit Times to Destination**
- **Europa Clipper**
 - Desired launch date of June 2022
 - Jovian system transit time reduced by 65% over existing launch vehicles
 - Reduced mission operations cost over time

SLS

Earliest Launch

*Period: 6/4/22 - 6/24/22 (SLS)

2.5 Years (SLS) 7.4 Years (Atlas)

Jupiter Orbit Insertion 12/24/24 or 5/1/25 (SLS) 11/26/29 (Atlas)

Jovian System Operations

Prime Europa Flyby Campaign: 36 months

SLS MASS TO DESTINATION

Up to 5 times greater mass to orbit capability than current launch systems

- Increases payload mass margins
- Offers range of injection propulsion options

New Horizons

SLS would have doubled delivered payload mass to Pluto

Europa Lander

- 16 mT delivery to outer planets (with margin)

Payload Lift Comparison

SLS VOLUME TO DESTINATION

Largest existing 5m fairing

Up to 6 times greater volume available

Multiple payload combinations

- -Dual manifesting within fairing
- Payload constellations
- More powerful injection stages

8 m

(monolithic).

Telescopes

Larger payloads translate into simpler orbital operations (fewer deployments)

Architectures Enabled by SLS

Hubble

(monolithic)

www.nasa.gov/sls

James Webb

(seamented)

aperture telescope

RANGE OF PAYLOAD ENCAPSULATION

SLS

SLS BLOCK 1 CREW/CARGO INTEGRATED SPACECRAFT/PAYLOAD ELEMENT (ISPE)

SLS BLOCK 1B CREW/CARGO INTEGRATED SPACECRAFT/PAYLOAD ELEMENT (ISPE)

SLS 8.4m PLA CONCEPT

PLA MBSE APPROACH

- Gather stakeholder requirements from existing documents and COTS specifications
- Develop User Interface (UI) to capture PLA accommodation attributes, such as payload destination, mass, width, height, potential loads, etc.
- Requirements and user data represented as a CAD model
 - Needed updates to PLA design will be by parameter modifications
 - -Loads/stress analyses made within CAD modeling function
 - Results are exported along with any parameter updates into a SysML MagicDraw model
- Model verification will indicate that requirements were successfully verified and which were not

MBSE PATHFINDER: SLS PLA DESIGN DEFINITION INTEGRATING RQMTS/CAD/FEM/VERIFICATION TO REDUCE CHANGES/TIME TO PRODUCTION

Technical Challenge

SLS engineering resources insufficient to evaluate 10's-100's of optimized PL adapter options for SLS users over life of program

MBSE Challenge

Develop User Interface to feed MagicDraw parameters into CAD/analytical model and verify requirements were met by PL adapter concept

Pathfinder Findings

- Benefits:
 - Outward facing GUI for capture of SLS payloads
 - Automated concept design of PL integrated to SLS
 - Demonstrated MBSE to MBE for design and mfg.
 - Minimizes error from manual steps in integration
 - Matures design to higher fidelity quickly
- Next Step: Develop front-end SLS user interface within existing <u>SLS Mission Planners Guide</u>

SLS SPACE LAUNCH SYSTEM

CONCLUSIONS

- NASA is moving toward more digitally integrated solutions that span life-cycle from concept to manufacturing
- Unique scale of SLS and associated payload accommodation options benefits from a MBSE PLA approach
 - Partial "automation" of analysis cycle provides analysts with a 75% fidelity answer at the beginning of their detailed analysis
 - Allows potential users to "self analyze" accommodation feasibility on SLS sooner
 - Provides SLS with enough fidelity to determine feasibility of optimizing payload complement sooner
 - Insight into whether existing PLA design is sufficient or use of new design is worth performance enhancement investment
 - Ability to accommodate single payload or fly multiples on one mission
 - Opportunity to trade performance to destination for different payloads

FUTURE WORK

- Compare MBSE finding to the full range of NASA missions ranging from Super Heavy to Sounding Rocket launch vehicles as well as Habitat to Nanosat spacecraft
- Understand where MBSE provides the biggest return soonest
 - Determine where models and data can flow most easily and efficiently
 - Application should include internally to a launch vehicle or spacecraft as well as externally across a range of launch vehicle and spacecraft delivery providers
- Ultimate goal is more detailed design/analysis improvements earlier resulting in less re-work across not only physical interfaces, but the entire federated infrastructure

